All solutions are valid The rating function has quadratic terms, that models the rating for the presence of 2 specific assignments in the assignment set. Therefore, the rating of one assignment depends on the presence of an other assignment in the solution [DISKI 86].

\[ \begin{align*} \begin{aligned} &\min (\sum\limits_i^N\sum\limits_j^A\sum\limits_k^N\sum\limits_l^A x_{ij} \times x_{kl} \times c_{ijkl}) + (\sum\limits_{i,j}^{N,A} x_{i,j} \times b_{i,j})\\ &c_{ijkl}, b_{ij} \in \mathbb{R} \end{aligned} \end{align*} \]

QAPs are \(NP\) complete and even an \(\epsilon\)-approximation [10.1145/321958.321975].

- SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
- SPDX-FileCopyrightText: Contributors To The
`net.splitcells.*`

Projects